SUPPLEMENTARY MATERIALS

С

APOA1.CETP Mice Serum (0hr)

1.5

COX-2/β-actin .0.5

0.0

CETPI Control LPS (1µg/ml)-stimulated THP1 (24hr)

APOA1.CETP Mice Plasma (0hr)

LPS(1µg/ml)-stimulated THP1 (24hr)

D

THP1 (LPS1µg/ml, CETP 1µM for 24hr)

Supplementary Figure 4

A APOE*3-Leiden.CETP Mice

Supplementary Figure 5

Supplementary Figure Legends:

Figure S1

A. Plasma CETP activity levels in samples obtained at 72 hours after *S. pneumoniae* infection from female *APOA1.CETP* mice treated with control or CETPi after onset of infection (72 hr, mean \pm SD, 1.0 \pm 0.13 (Control, n=12) versus 0.82 \pm 0.11 (CETPi, n=5) mg/dl, unpaired *t*-test, p=0.015). **B.** Plasma LDL-C levels in samples obtained at 0 and 72 hours after *S. pneumoniae* infection from female *APOA1.CETP* mice treated with control or CETPi before onset of infection (72 hr, mean \pm SD, 28.68 \pm 11.28 (Control, n=6) versus 37.12 \pm 8.54 (CETPi, n=6) mg/dl, unpaired *t*-test, p=0.17); **C.**Plasma total cholesterol levels in samples obtained at 0 and 72 hours after *S. pneumoniae* infection from female *APOA1.CETP* mice treated with control or CETPi before onset of infection at 0 and 72 hours after *S. pneumoniae* infection from female *APOA1.CETP* mice treated *strest*, p=0.17); **C.**Plasma total cholesterol levels in samples obtained at 0 and 72 hours after *S. pneumoniae* infection (72 hr, mean \pm SD, 197.47 \pm 78.37 (Control, n=6) versus 252.95 \pm 36.09 (CETPi, n=6) mg/dl, unpaired *t*-test, p=0.15). **D.** Body weight for female *APOE*3-Leiden.CETP* mice treated with placebo or anacetrapib in sepsis; **E.** Core body temperature for female *APOE*3-Leiden.CETP* mice treated with placebo or anacetrapib in sepsis. Data are presented as mean \pm SD, *P<0.05, **P<0.01.

Figure S2

A.Body weight for female *APOA1.CETP* mice treated with placebo or anacetrapib in sepsis. **B.** Core body temperature for female *APOA1.CETP* mice treated with placebo or anacetrapib in sepsis. Data are presented as mean±SD, *P<0.05, **P<0.01.

Figure S3

A. COX-2 expression relative to β-actin in THP1 cells treated with serum collected from either control mice or CETPi-treated mice at 0hr. LPS at indicated dose was added before serum treatment; **B.** COX-2 expression relative to β-actin in THP1 cells treated with control serum or CETPi serum (mean \pm SD, 1.00 \pm 0.62 (Control, n=3) versus 0.54 \pm 0.82 (CETPi, n=3) ratio of protein expression relative to β-actin, unpaired *t*-test, p=0.046). **C.** Levels of secreted IL-1β in THP1 supernatants treated with serum collected from either control mice or CETPi-treated mice at 0hr. LPS at indicated dose was added before serum treatment. (mean \pm SD, 1.0 \pm 0.11 (Control, n=6) versus 0.65 \pm 0.14 (CETPi, n=6) relative protein secretion, unpaired *t*-test, p=0.0009); **D.** Levels of secreted IL-1β in THP1 supernatants treated with either DMSO or CETPi (1µM). LPS at indicated dose was added before drug treatment. (mean \pm SD, 1.0 \pm 0.14 (Control, n=3) versus 0.96 \pm 0.43 (CETPi, n=3) relative protein secretion, unpaired *t*-test, p=0.89)

Figure S4

A. Proportion of activated monocytes ($Ly6C^{++}SS^{High}$) in blood samples obtained at 0hours post-infection from female *APOE**3-*Leiden*.*CETP* mice treated with control or CETPi (mean±SD, 23.35±5.96 (CETPi, n=6) versus 12.16±2.51 (Control, n=6), unpaired *t*-test, p=0.002)

Figure S5

A. Transcriptional levels of pro-inflammatory markers in RAW 264.7 cells obtained 24 hours post-treatment with either control or CETPi (1µM) (*IL-1β*: mean±SD, 1.0±0.52(Control, n=8) versus 1.4±0.51 (CETPi, n=7) relative gene expression, unpaired *t*-test, p=0.16; *IL-6*: mean±SD, 1.0±0.88 (Control, n=6) versus 1.09±0.75 (CETPi, n=5) relative gene expression, unpaired *t*-test, p=0.86; *TNF-a*: mean±SD, 1.0±0.53 (Control, n=5) versus 1.45±0.17 (CETPi, n=5) relative gene expression , unpaired *t*-test, p=0.10; *COX-2*: mean±SD, 1.0±0.6 (Control, n=6) versus 1.28±0.28 (CETPi, n=5) relative gene expression, unpaired *t*-test, p=0.36; *CASP-1*: mean ± SD, 1.0±1.03 (Control, n=6) versus 0.5±0.5 (CETPi, n=5) relative gene expression, unpaired *t*-test, p=0.35); **B.** Transcriptional levels of pro-inflammatory markers in THP1 cells obtained 24 hours post-treatment with either DMSO or evacetrapib (2µM) (*CASP-1*: mean±SD, 1.0±0.48(Control, n=6) versus 15.33±14.82 (CETPi, n=6) relative gene expression, unpaired *t*-test, p=0.04; **C.** *COX-2*: mean±SD, 1.0±0.56 (Control, n=6) versus 3.22±0.56 (CETPi, n=6) relative gene expression, unpaired *t*-test, p=0.00004;

Figure S6

A.Body weight for female *APOA1.CETP* mice treated after onset of infection in sepsis. **B.** Core body temperature for female *APOA1.CETP* mice treated after onset of infection in sepsis.

Supplementary Tables:

Table 1: Primers for Pro-inflammatory Cytokines

Target	Forward Primer	Reverse Primer
ACTB	CATTGCTGACAGGATGCAGAAGG	TGCTGGAAGGTGGACAGTGAGG
(IDT, USA)		
CCL-5	GCTGCTTTGCCTACCTCTCC	TCGAGTGACAAACACGACTGC
(IDT, USA)		
CXCL-10	GCTGGGATTCACCTCAAGAA	CTTGGGGACACCTTTTAGCA
(IDT, USA)		
IL-6	ACAACCACGGCCTTCCCTAC	TCTCATTTCCACGATTTCCCAG
(IDT, USA)		
IL-1β	GCCTCGTGCTGTCGGACCCA	TGAGGCCCAAGGCCACAGGT
(IDT, USA)		

lytA	ACGCAATCTAGCAGATGAAGCA	TCGTGCGTTTTAATTCCAGCT
(IDT, USA)		
TNF-α	GTCCCCAAAGGGATGAGAAGTT	GTTTGCTACGAGGTGGGCTACA
(IDT, USA)		
COX-2	GCGACATACTCAAGCAGGAGCA	AGTGGTAACCGCTCAGGTGTTG
(murine)		
(IDT, USA)		
CASP-1	GGCACATTTCCAGGACTGACTG	GCAAGACGTGTACGAGTGGTTG
(murine)		
(IDT, USA)		
COX-2	CGGTGAAACTCTGGCTAGACAG	GCAAACCGTAGATGCTCAGGGA
(human)		
(IDT, USA)		
CASP-1	GCTGAGGTTGACATCACAGGCA	TGCTGTCAGAGGTCTTGTGCTC
(human)		
(IDT, USA)		

Table 2. List of antibodies used for flow cytometric analysis of BAL samplesfrom APOA1.CETP mice

Antibody	Tag	Clone	Input*
CD45	PerCP	30-F11	0.25 μg
CD64 (FcyRI)	PE	X54-5/7.1	1 µg
CD11b	APC	M1/70	0.25 μg
I-A/I-E (MHCII)	Pacific Blue	M5/114.15.2	0.25 μg

Ly-6G	AF700	1A8	0.25 µg
Ly-6C	APC/Cy7	HK1.4	0.25 µg
Siglec F (CD170)	PE/Cy7	S17007L	0.25 µg

*per 1x10⁶ cells in 100 μL

 Table 3. List of antibodies used for flow cytometric analysis of blood samples

 from APOA1.CETP mice

Antibody	Tag	Clone	Input*
CD45	PerCP	30-F11	0.25 μg
CD11b	APC	M1/70	0.25 µg
F4/80	BV 605	T45-2342	0.25 µg
Ly-6G	AF700	1A8	0.25 µg
Ly-6C	APC/Cy7	HK1.4	0.25 µg
Dump Channel:			
CD19	PE/Cy7	6D5	0.25 μg
CD3	PE/Cy7	17A2	0.25 µg
NK-1.1	PE/Cy7	S17016D	0.5 µg
Siglec F (CD170)	PE/Cy7	S17007L	0.25 µg

*per 100 µL blood

Table 4. Detailed list of antibodies and corresponding IgG controls used for flow
cytometric analysis of BAL and blood samples from APOA1.CETP mice:

Supplier	Cat #	Description	Clone	Input*	Panels:
Biolegend	103129	PerCP anti-mouse CD45	30-F11	0.25 μg	BAL, Blood
Biolegend	101211	APC anti-mouse/human	M1/70	0.25 µg	BAL, Blood

CD11b

Biolegend	400611	APC Rat IgG2b, κ	RTK4530	0.25 µg	BAL, Blood
		Isotype Ctrl			
Biolegend	127621	Alexa Fluor 700 anti-	1A8	0.25 µg	BAL, Blood
		mouse Ly-6G			
Biolegend	400528	Alexa Fluor 700 Rat	RTK2758	0.25 µg	BAL, Blood
		IgG2a, к Isotype Ctrl			
Biolegend	128025	APC/Cy7 anti-mouse Ly-	HK1.4	0.25 µg	BAL, Blood
		6C			
Biolegend	400719	APC/Cy7 Rat IgG2c, κ	RTK4174	0.25 µg	BAL, Blood
		Isotype Ctrl			
Biolegend	155527	PE/Cy7 anti-mouse	S17007L	0.25 µg	BAL, Blood
		CD170 (Siglec-F)			
Biolegend	400521	PE/Cy7 Rat IgG2a, κ	RTK2758	0.25 µg	BAL, Blood
		Isotype Ctrl			
Biolegend	139304	PE anti-mouse CD64	X54-5/7.1	1 µg	BAL
		(FcyRI)			
Biolegend	400112	PE Mouse IgG1, κ	MOPC-21	1 µg	BAL
		Isotype Ctrl			
Biolegend	107619	Pacific Blue anti-mouse	M5/114.15.	0.25 µg	BAL
		I-A/I-E	2		
Biolegend	400627	Pacific Blue Rat IgG2b,	RTK4530	0.25 µg	BAL
		к Isotype Ctrl			
Biolegend	156513	PE/Cy7 anti-mouse NK-	S17016D	0.5 µg	Blood
		1.1			

Biolegend	400253	PE/Cy7 Mouse IgG2a, κ	MOPC-	0.5 µg	Blood
		Isotype Ctrl	173		
Biolegend	115519	PE/Cy7 anti-mouse	6D5	0.25 µg	Blood
		CD19			
Biolegend	400522	PE/Cy7 Rat IgG2a, κ	RTK2758	0.25 µg	Blood
		Isotype Ctrl			
Biolegend	100219	PE/Cy7 anti-mouse CD3	17A2	0.25 µg	Blood
Biolegend	400617	PE/Cy7 Rat IgG2b, κ	RTK4530	0.25 µg	Blood
		Isotype Ctrl			
Biolegend	400655	Brilliant Violet 421 Rat	RTK4530	0.5 µg	Blood
		IgG2b, κ Isotype Ctrl			
BD	743281	Brilliant Violet 605 anti-	T45-2342	0.25 µg	Blood
Biosciences		mouse F4/80			
BD	563144	Brilliant Violet 605 Rat	R35-95	0.25 µg	Blood
Biosciences		IgG2a, к Isotype Ctrl			

*(per ~1x10⁶ cells in 100 μL, or per 100 μL of blood)

Supplementary Methods:

Flow cytometry

BAL: the samples were first gated on forward scatter (FSC) and side scatter (SSC) to remove most of the debris and contaminating RBCs. Cell aggregates were then removed using a FSC width gate.CD45 was used to identify leukocytes that were then gated for viability using the Fixable Viability Dye eFluor[™] 520. To have the purest viable leukocyte gate, cells gated loosely for higher fluorescence in CD45 were fed into Viability vs FSC, then Viability vs SSC and then fed back into a Viability vs CD45 graph. This multi-level gating allowed us to not only have a pure gate but also

check for any leukocytes with lower CD45 expression as well as cells with higher autofluorescence in CD45 channel. Macrophages were identified as CD45⁺ CD64^{+/low} Ly-6G⁻ and then subdivided into Tissue Resident Alveolar Macrophages (TR-AM) that are SiglecF⁺, Infiltrating Monocyte derived (monocytic) Alveolar Macrophages (Mo-AM) that are CD11b⁺. Interstitial Macrophages (IM), that are also CD11b⁺ are not naturally found in BAL. MHCII expression was used to exclude that there is no contaminating IMs in Mo-AM gate. Likewise, the presence of Dendridic Cells (DC) that may also end up in the BAL were checked using CD64 and MHCII expression. After Alveolar Macrophages were sub-phenotyped; they were analyzed for their Ly-6C and MHCII fluorescence (normalized to IgG, gated based on SSC, FSC, CD45 and viability). Blood: FSC and SSC were used to gate the debris and RBCs out, FSC width was used to gate out the cell aggregates and then CD45 was used to obtain a clean population of leukocytes. A dump channel was used to gate out Eosinophils (SiglecF), B cells (CD19), T cells (CD4) and NK cells (NK1.1). CD11b⁺ leukocytes were selected, and monocytes and neutrophils were gated as CD45⁺ CD11b⁺ Dump⁻ Ly-6G⁻ and CD45⁺ CD11b⁺ Dump^{+/-} Ly-6G⁺ respectively. Monocytes were then investigated for their expression of Ly-6C (inflammatory marker), CCR2 (found on young monocytes leaving the bone marrow and necessary for recruitment to the site of inflammation) and F4/80 (maturation marker).